Research

At the University of Oregon, data science researchers focus on tackling complex challenges and exploring novel methodologies to extract insights from massive datasets.

Areas of Research Interest: 

Social Justice and Data Science
Biostatistics
Statistical Forensic Genetics
Data Optimization
Geometric Deep Learning
AI-Assisted Decision Making
Population Genetics
Microbiome Research
Evolutionary Biology
Generative Deep Learning
Digital Health/Pathology
Computational Biology

a seadragon positioned in a lab tube for scanning by a large machine

Read the latest research from our faculty

From conference presentations to academic journals, browse some of UO's published data science research.

2023

How Useful Are Tax Disclosures in Predicting Effective Tax Rates? A Machine Learning Approach
Guenther, D.A., Peterson, K., Searcy, J., Williams, BM. 
The Accounting Review, 1-26. 2023

Improving biology faculty diversity through a co-hiring policy and faculty agents of change
Harris, M., Rosser, S., Goldman, M., Márquez-Magaña, L., Rohlfs, R.V. 
PLoS ONE: 18(5): e0285602, 2023

Deep learning for denoising High-Rate Global Navigation Satellite System data
Thomas, A., Melgar, D., Dybing, S.N., Searcy, J. 
Seismica 2. 2023

Frontline Data Science: Lessons Learned From a Pandemic 
Beck, E.A., Tavalire, H., Searcy J. 
PubPub 5. 2023

Reaching Latinx Communities With Algorithmic Optimization for SARS-CoV-2 Testing Locations
Searcy, J., Cioffi, C.C., Tavalire, H.F., Budd, E.L.,  Cresko W.A., DeGarmo, D. and others 
Prevention Science, 1-12. 2023

Low-Altitude UAV Imaging Accurately Quantifies Eelgrass Wasting Disease From Alaska to California
Yang, B., T. L. Hawthorne, L. Aoki, and others
Geophysical Research Letters 50: e2022GL101985. 2023

UAV High-Resolution Imaging and Disease Surveys Combine to Quantify Climate-Related Decline in Seagrass Meadows
Aoki, L. R., B. Yang, O. J. Graham, C. Gomes, B. Rappazzo, T. L. Hawthorne, E. J. Duffy, and D. Harvell. 2023. 
Oceanography 36: 38–39. 2023

Novel mitochondrial genome rearrangements including duplications and extensive heteroplasmy in Antarctic Notothenioids
Minhas, B.F. , Beck, E.A., Cheng, C.-H., Catchen, J.  
Scientific Reports. 2023

Genome-wide analysis facilitates estimation of the amount of male contribution in meiotic gynogenetic threespine stickleback (Gasterosteus aculeatus)
Currey, M., Walker, C, Bassham, S., Healey, H.M., Beck, E.A., Cresko, W.A. 
Journal of Fish Biology. 2023

Host genomic variation shapes gut microbiome diversity in threespine stickleback fish. bioRxiv preprint available
Small C.M., Beck E.A., Currey M.C., Tavalire H.F., Bassham S., Cresko W.A.  
2023

Ovarian transcriptional response to Wolbachia infection in D. melanogaster in the context of between-genotype variation in gene expression
Frantz S.I, Small C.M., Cresko W.A., Singh N.D.  
G3. 2023

 

2022

Associations between forensic loci and neighboring gene expression levels may compromise medical privacy
Bañuelos, M.,  Zavaleta, Y.J.A.,  Roldan, A.,  Reyes,R.-J., Guardado, M., Chavez Rojas, B., Nyein, T.,  Rodriguez Vega, A., Santos, M., Huerta Sanchez, E., Rohlfs R.V. 
Proceedings of the National Academy of Sciences of the United States of America 119: e2121024119, 2022

Video abstract: Do forensic profiles reveal medical information?
Roldan, A., Reyes, R.-J., Zavaleta, Y.J.A., Bañuelos, M., Rohlfs R.V. 
2022

Predictable Changes in Eelgrass Microbiomes with Increasing Wasting Disease Prevalence across 23° Latitude in the Northeastern Pacific
Beatty, D. S., L. R. Aoki, B. Rappazzo, and others
mSystems 7: e00224-22. 2022

Preparing Aquatic Research for an Extreme Future: Call for Improved Definitions and Responsive, Multidisciplinary Approaches
Aoki, L. R., M. M. Brisbin, A. G. Hounshell, and others
BioScience 72: 508–520. 2022

Disease surveillance by artificial intelligence links eelgrass wasting disease to ocean warming across latitudes
Aoki, L. R., Rappazzo, B., Beatty, D. S., and others
Limnology and Oceanography 67: 1577–1589. 2022

Extreme intraspecific divergence in mitochondrial haplotypes makes threespine stickleback fish an emerging evolutionary mutant model for mito-nuclear interactions
Beck, E. A., Bassham, S., Cresko, W. A.  
Frontiers in Genetics 13:925786. 2022

Leafy and Weedy Seadragon Genomes connect Genic and Repetitive DNA Features to the extravagant Biology of Syngnathid Fishes
Small, C. M., Healey, H. M., Currey, M. C., Beck, E. A., Catchen, J., Lin, A. S. P., Cresko, W. A., Bassham, S.  
Proceedings of the National Academy of Sciences of the United States of America 119:e2119602119 (cover article). 2022

The evolution of the testis transcriptome in pregnant male pipefishes and seahorses
Johnson, B. D., Anderson, A. P., Small, C. M., Rose, E., Flanagan, S. P., Hendrickson-Rose, C., Jones, A. G.  
Evolution 76:2162-2180. 2022

Evolution and developmental expression of the sodium iodide symporter (NIS, slc5a5) gene family: Implications for perchlorate toxicology
Petersen, A. M., Small, C. M., Yan, Y., Wilson, C., Bremiller, R. A., Buck, L. C., von Hippel, F. A., Cresko, W. A., Postlethwait, J. H.
Evolutionary Applications 15:1079-1098. 2022

Rapid Ground Motion Forecasting for Large Earthquakes with HR-GNSS and Deep Learning
Lin, J.T., Melgar, D., Thomas, A.M., Sahakian, V.J., Searcy, J. 
AGU Fall Meeting Abstracts 2022, NH33A-08. 2022

 Learning source, path and site effects: CNN-based on-site intensity prediction for earthquake early warning
Zhang, H., Melgar, D., Sahakian, V., Searcy, J., Lin, J.T. 
Geophysical Journal International 231 (3), 2186-2204. 2022

Workflow Analysis To Understand Ease of Preparation and Importation of 3D Exemplar Head Scan Data to 3D Modeling Software Programs for N95 Mask Sizing and Fit
Sokolowski, S.L., Zou, Y., Searcy, J. 
International Textile and Apparel Association Annual Conference Proceedings. 2022

Effectiveness of a COVID-19 Testing Outreach Intervention for Latinx Communities: A Cluster Randomized Trial
DeGarmo, D.S., De Anda, S., Cioffi, C.C., Tavalire, H.F., Searcy, J.A., Budd, E.L. 
JAMA Network Open 5 (6), e2216796-e2216796. 2022

 

2021

Elucidating the adaptive potential of coral holobionts under thermal stress
Avila-Magaña V., Kamel, B., DeSalvo, M., Kitano, H., Rohlfs, R.,Iglesias-Prieto, R., Medina, M.  
Nature Communications: 12: Article number 5731, 2021

Comparative regulomics reveals pervasive selection on gene dosage following whole genome duplication
Gillard, G., Grønvold, L., Røsæg, L., Mekrog Holen, M., Monsen, Ø., Koop, B., Rondeau, E.,  Kumar Gundappa, M., Mendoza, J., Macqueen, D., Rohlfs, R., Sandve, S.,  Hvidsten, T. 
Genome Biology: 22: 103, 2021

The Future Is Big—and Small: Remote Sensing Enables Cross-Scale Comparisons of Microbiome Dynamics and Ecological Consequences
Beatty, D. S., Aoki, L. R., Graham, O. J., and Yang, B.
mSystems 6: e01106-21. 2021

Advancing Human Disease Research with Fish Evolutionary Mutant Models
Beck, E. A., Healey, H. M., Small, C. M., Currey, M. C., Desvignes, T., Cresko, W. A., Postlethwait, J. H.
TRENDS in Genetics 38(1):22-44. 2021. PMID:34334238

Rapid Determination of Magnitude, Location, and Source Extent with HR-GNSS and Deep Learning
Lin, J. T., Melgar, D., Thomas, A., Sahakian, V., Searcy, J. 
AGU Fall Meeting Abstracts 2021, S14A-05. 2021

Early warning for great earthquakes from characterization of crustal deformation patterns with deep learning
Lin, J. T., Melgar, D., Thomas, A. M., Searcy, J.
Journal of Geophysical Research: Solid Earth 126(10): e2021JB022703. 2021

Identification of Low‐Frequency Earthquakes on the San Andreas Fault With Deep Learning
Thomas, A. M., Inbal, A., Searcy, J., Shelly, D. R., Bürgmann, R.  
Geophysical Research Letters 48(13): e2021GL093157. 2021

Towards Automatic Sizing for PPE with a Point Cloud Based Variational Autoencoder
Searcy, J. A., Sokolowski, S. L.
arXiv preprint arXiv:2105.10067. 2021

 

2020

QTL Mapping of Intestinal Neutrophil Variation in Threespine Stickleback Reveals Possible Gene Targets Connecting Intestinal Inflammation and Systemic Health
Beck, E. A., Currey, M., Small, C. M., Cresko, W. A.  
G3 (Bethesda). 2020

Comparative regulomics reveals pervasive selection on gene dosage following whole genome duplication
Gillard, G., Grønvold, L., Røsæg, L., Mekrog Holen, L., Monsen, Ø., Koop, B., Rondeau, E., Kumar Gundappa, M., Mendoza, J., Macqueen, D., Rohlfs, R., Sandve, S., Hvidsten, T. 
Genome Biology: 22: 103, 2021

Ten simple rules for an inclusive summer coding program for non-CS undergraduates
Pennings, P., Banuelos, M., Catalan, F.,  Caudill, V.,  Chakalov, B., Hernandez, S., Jones, J., Okorie, C., Modrek, S., Rohlfs, R., Adelstein, N. 
PLoS Computational Biology: 16(9): e1007833, 2020

Reckoning with our eugenic roots and cultivating anti-racism in science
Rohlfs, R. 
Summer Institute in Statistical Genetics Op-Ed talk: 2020

Understanding our eugenic past to take steps towards scientific accountability
Rohlfs, R. 
Genes to Genomes Blog: 8 June 2020

Eugenics on Campus
Tam, R., Kaur, J., Tam, C., Reynolds, M., and Rohlfs, R. Longmore Institute Disability Remix Blog: 3 Jan 2020

 

2019

Highly reproducible 16S sequencing facilitates measurement of host genetic influences on the stickleback microbiome
Small, C. M., Currey, M., Beck, E. A., Bassham, S., Cresko, W. A.  
mSystems 4: e00331-19. PMID: 31409661. 2019

Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives
Cytrynbaum, E. G., Small, C. M., Kwon, R. Y., Boaz, H., Kent, D., Yan, Y., Knope, M. L., Bremiller, R. A., Desvignes, T., Kimmel, C. B.  
Evolution Letters 3:374-391. 2019

 

2019

Highly reproducible 16S sequencing facilitates measurement of host genetic influences on the stickleback microbiome
Small, C. M., Currey, M., Beck, E. A., Bassham, S., Cresko, W. A.  
mSystems 4: e00331-19. PMID: 31409661. 2019

Highly reproducible 16S sequencing facilitates measurement of host genetic influences on the stickleback microbiome
Small, C. M., Currey, M., Beck, E. A., Bassham, S., Cresko, W. A.  
mSystems 4: e00331-19. PMID: 31409661. 2019

Highly reproducible 16S sequencing facilitates measurement of host genetic influences on the stickleback microbiome
Small, C. M., Currey, M., Beck, E. A., Bassham, S., Cresko, W. A.  
mSystems 4: e00331-19. PMID: 31409661. 2019

Highly reproducible 16S sequencing facilitates measurement of host genetic influences on the stickleback microbiome
Small, C. M., Currey, M., Beck, E. A., Bassham, S., Cresko, W. A.  
mSystems 4: e00331-19. PMID: 31409661. 2019

Highly reproducible 16S sequencing facilitates measurement of host genetic influences on the stickleback microbiome
Small, C. M., Currey, M., Beck, E. A., Bassham, S., Cresko, W. A.  
mSystems 4: e00331-19. PMID: 31409661. 2019

Highly reproducible 16S sequencing facilitates measurement of host genetic influences on the stickleback microbiome
Small, C. M., Currey, M., Beck, E. A., Bassham, S., Cresko, W. A.  
mSystems 4: e00331-19. PMID: 31409661. 2019