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ABSTRACT
This paper investigates the ability of the covariance changepoint

detection (CCPD) method introduced by Galeano and Peña to de-

tect and explain changes in covariance [2]. The algorithm is tested

on two case studies that use time series data from air quality in-

dex (AQI) sensors that experience positive covariance shifts due

to wildfire outbreaks. These experiments demonstrate that, when

applied to lower-dimensional problems, the CCPD algorithm pro-

vides highly accurate and timely covariance changepoint detection.

However, the high computational complexity of the algorithm de-

mands further research to increase its efficiency. Until then, the

CCPD method is only a viable alternative to existing univariate

methods in lower-dimensional settings where variance changes

are more effectively explained by detecting underlying changes in

covariance.
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1 INTRODUCTION
The identification of anomalies is a fundamental part of event de-

tection, which seeks to determine if events of interest have taken

place based on patterns observed in data. Because anomalies of-

ten occur when there is a change in the relationship between data

and the environment from which it emerges, anomalies commonly

mark changepoints at which the distribution of the data changes

in response to an outside event. Due to the connection between

anomalies and events of interest, event detection may be performed

by tracking these changepoints in a process known as changepoint
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detection. When working with time series data, or sequentially-

ordered data that is collected over a period of time, changepoints

signify specific timesteps when events of interest occur.

The approach used to detect changepoints in time series data

varies based on problem constraints and properties of the data. The

first main problem constraint that guides the development of a

changepoint detection algorithm is the determination of the need

for an online or offline solution. An online algorithm processes data

points as they occur and attempts to detect changepoints in real

time, while an offline algorithm has access to the entire time series

when detecting changepoints. Another key constraint is the choice

between minimizing false positives and minimizing time to detec-

tion. Certain problems demand a high degree of certainty before

alerting that a changepoint has been found, as in the case of fraud

detection, while others are more concerned with prompt detection,

as with real-time earthquake detection. Because achieving a high

degree of certainty typically requires more data to verify that an

anomaly is truly a changepoint, minimizing false positives is at

odds with minimizing time to detection.

Along with these two constraints imposed by the nature of the

problem, certain properties of the input data, such as its dimension-

ality and volume, determine the characteristics of the algorithm

used for changepoint detection. Dimensionality involves the num-

ber of variables tracked in the time series data; univariate methods

work with time series that involve only one variable, while multi-

variate methods work with time series that involve two or more

variables. An additional concern is the volume of the data; if ex-

pected to work efficiently on both low and high volumes of data,

the changepoint detection algorithms must be scalable, meaning

that it must be able to process the data efficiently regardless of the

input volume. Dimensionality and data volume are often related

since multivariate time series contain many more data points than

univariate time series with the same number of timesteps. As a

result, scalability is commonly a key concern when working with

multivariate data due to its association with high data volume.

While univariate changepoint detection methods for time series

data have been widely studied, multivariate methods have received

less attention, as the dimensionality and volume of multivariate

data introduce scalability challenges that constrain the applicabil-

ity of multivariate detectors. However, the ability of univariate

methods to fully explain changes in the data is limited for cer-

tain applications, as Galeano and Peña found in their 1997 paper

comparing variance changepoint detection methods to their pro-

posed covariance changepoint detection (CCPD) method, an offline

multivariate detector [2]. This paper examines the utility of their

proposed CCPD method in detecting and explaining shifts in multi-

variate data through a case study that uses air quality index (AQI)

data to track wildfire activity.
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2 RELATEDWORK
Much of the work on offline variance changepoint detection meth-

ods build off of an approach introduced by Inclàn and Tiao in 1994

[3]. Their method iterates over the data, constructing a running

cumulative sum of the square of each data point encountered so far;

the sum is then centered and normalized so that it has approximate

bounds of -1 and 1 [3]. The value of the statistic at each timestep is

then compared against a pre-determined threshold that is set based

on the number of timesteps in the data and the desired level of con-

fidence needed to mark the timestep as a changepoint [3]. In cases

of homogeneous variance, the cumulative sum of squares statistic

oscillates around 0 and does not exceed the threshold, whereas in

cases of variance changes, the statistic increases past the threshold.

Changepoints are identified by marking the timesteps where the

statistic exceeds the threshold.

Many later papers borrowed the iterative approach featured in

the Inclàn and Tiao paper. However, their cumulative sum of squares

approach implicitly assumes that a change in variance would be

accompanied by a change in themean, which is not always true. The

1997 paper put forth by Chen and Gupta addressed this shortcoming

with a changepoint detection method that detects variance changes

even when the mean remains constant [1]. Their method uses the

Schwarz Information Criterion (SIC), a heuristic used to select

between models based on the amount of variation that the model

is able to explain and the number of parameters used. Unexplained

variation in the dependent variable results in a high SIC, meaning

that a lower SIC indicates a better model. In the event of a variance

change, the SIC for a model fitted to the entire time series is higher

than the SIC for the subsequence of the time series preceding the

changepoint, as the variance change experienced in the time series

produces more unexplained variation in the dependent variable

and, accordingly, a higher SIC. It follows that the subsequence

that precedes the changepoint has a minimal SIC since there is

no variance change and therefore minimal unexplained variation.

Chen and Gupta leverage these properties of the SIC in the instance

of a variance change to conclude that, if the SIC for the entire time

series is significantly greater than the minimal SIC based on the

desired confidence level, then the time series must experience a

variance change [1]. This SIC procedure makes few assumptions

about the context of the variance change within the data, making

it a flexible method for identifying variance changes in a variety of

contexts.

While Chen and Gupta managed to expand the applicability of

variance changepoint detection algorithms with their approach,

their univariate method naturally does not account for cases in

which variance changes are driven by underlying changes in co-

variance. In these instances, a covariance changepoint detector is

better suited to describing shifts in the distribution of the data than

a variance detector. However, multivariate approaches to variance

changepoint detection were seldom studied until Galeano and Peña

proposed a covariance changepoint detection algorithm in 2005.

While testing their algorithm, they found that multiple variance

changes can often be “explained by a single covariance change,”

illustrating that a covariance detector may provide more insight

than a univariate detector when attempting to explain shifts in data

[2]. Given the potential for Galeano and Peña’s CCPD algorithm

to more effectively describe and draw conclusions about variance-

related changes in data, this paper tests the performance and ex-

planatory power of their proposed CCPD method using real-world

case studies on wildfire data.

3 METHODS

Figure 1: Locations of the sensors used in the Cedar Creek
Fire case study and a polygon showing the fire perimeter.

Figure 2: Locations of the sensors used in theAugust Complex
Fire case study and a polygon showing the fire perimeter.

3.1 Covariance Detection Algorithm
To detect covariance changes, the Galeano and Peña algorithm

monitors the covariance matrix, which stores the covariance values

between variables, for specific changes at each timestep. Note that

a covariance matrix containing observations for 𝑛 variables has 𝑛2

entries. As a result, the time and space required to compute the algo-

rithm grows exponentially due its reliance on the covariance matrix
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for changepoint detection. In the event of a positive covariance

change, the covariance values between different variables increase,

causing the off-diagonal entries in the covariance matrix to increase.

Consequently, we may test for the existence of a changepoint by

looking for evidence of an increase in the off-diagonals [2].

To assess the level of evidence for a changepoint, the algorithm

performs hypothesis testing, with the null hypothesis correspond-

ing to a lack of change in the off-diagonals and the alternative

hypothesis corresponding to an increase in the off-diagonals. If a

changepoint exists, it must occur at the timestep where the alter-

native hypothesis is most likely due to the connection between

an increase in the off-diagonals and a positive covariance shift. To

locate this timestep, we apply the likelihood ratio test (LRT) to the

time series to compare the likelihood of the two hypotheses. The

LRT statistic reaches its maximum value at the timestep where

the likelihood of the alternative hypothesis is highest; because this

timestep demonstrates the most evidence of a covariance change,

it is subsequently marked as a changepoint.

3.2 Case Study Formation
The CCPD algorithm was then applied to two case studies that used

time series data sourced from the Purple Air sensor network to

capture wildfire activity
1
. The first case study used AQI data from

six randomly selected sensors in the vicinity of the Cedar Creek Fire

and included readings from June 2022 to October 2022. Similarly, the

second case study used AQI data from six randomly selected sensors

around the August Complex fire with readings from May 2020 to

November 2020. The locations of sensors used in the case studies

are shown in Figures 1 and 2 and the time series for the sensors are

plotted in Figures 3 and 5. The goal of each case study was to test

whether the algorithm could detect the positive covariance shift

among the sensors as their AQI readings simultaneously increased

due to the wildfire smoke.

4 RESULTS
In the Cedar Creek case study, the maximum LRT value occurred

at timestep 9,702, which corresponds to September 10, 2022. Ac-

cording to the Lane Regional Air Monitoring Program (LRAPA),

the AQI in the Eugene area exceeded the acceptable AQI thresh-

old of 50 on September 10, 2022
2
Based on the LRAPA data, the

timestep of the maximum LRT value aligns with the real-world

shift in AQI readings around Eugene. From this, we conclude that

the CCPD algorithm successfully identified the changepoint using

the positive covariance shift among the sensors. Underscoring the

performance of the algorithm is the speed with which it picked

up on the covariance shift, illustrating that the CCPD procedure

minimizes time to detection without sacrificing detection accuracy.

The algorithm also delivered noteworthy results with the data

from the August Complex case study, where the maximum LRT

value took place at timestep 10,529 on August 18, 2020. The separate

fires that merged to form the August Complex ignited on August

16 and August 17, suggesting that the maximum LRT value is con-

sistent with the positive covariance shift caused by the increase

in AQI readings across sensors following the fire outbreaks. These

1
purpleair.com

2
https://www.lrapa.org/.

Figure 3: Time series for Cedar Creek sensors with dashed
line marking the detected changepoint at timestep 9,702.
Note that time series color corresponds to sensor marker
color in Figure 1.

Figure 4: An alternative view of the six Cedar Creek fire
sensors created by superimposing the time series.

results further demonstrate the ability of the CCPD algorithm to

detect changepoints accurately.
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Though the detection delay of one to two days initially implies

worse performance than in the Cedar Creek case study, an examina-

tion of the time series data in Figure 5 reveals a more complicated

result. We can plainly observe that the Lakeport and Lucerne sen-

sors, shown in dark green and light green, began to spike later than

the other sensors. The delay in detection may therefore be partially

attributed to the time series data available, as the sensors evidently

experienced a delay in picking up the fire. An additional reason

for this delay lies in the design of the CCPD method. Because the

detector is looking for the strongest possible evidence of a positive

covariance shift through the maximum LRT value, the changepoint

is marked as August 18 when the readings from every sensor signal

a positive covariance change, rather than marked earlier when only

a subset of the six sensors indicate a positive covariance change. By

marking the changepoint as the timestep with the most evidence

for a positive covariance shift, the CCPD algorithm guards against

a false positive, which is appropriate for an offline algorithm. Such

an outcome would not be suitable for an online algorithm, however,

as the underlying logic would wrongly prioritize the minimization

of false positives over reducing time to detection. For this paper’s

offline application, the one to two day delay represents a satisfac-

tory level of expedience in detecting the covariance change and

ensures a high degree of accuracy.

Figure 5: Time series for six August Complex sensors with
dashed line marking the detected changepoint at timestep
10,529. Note that time series color corresponds to sensor
marker color in Figure 2.

5 DISCUSSION AND CONCLUSION
As the results of the case studies indicate, the CCPD algorithm pro-

posed by Galeano and Peña detects changes in covariance quickly

and accurately, providing a compelling alternative to univariate

Figure 6: An alternative view of the six August Complex fire
sensors created by superimposing the time series.

methods when faced with variance changes driven by underlying

covariance shifts in lower-dimensional settings. However, the 𝑛2

computational complexity of the algorithm prevents it from work-

ing well on higher-dimensional examples. More specifically, the

property of the algorithm that makes it advantageous in certain

settings–namely, its ability to leverage data from multiple time

series to detect changepoints–does not scale. This limitation con-

strains the applicability of the CCPD procedure to low-dimensional

settings in which variance changes are better explained through

changes in covariance. To overcome this constraint, we may approx-

imate the most expensive computations involved in monitoring

changes in the covariance matrix to decrease the computational

complexity of the algorithm. Literature on approximating the ma-

trix determinant is of particular interest since the determinant is

the most expensive operation in the CCPD algorithm, with a lower

complexity bound that is approximately exponential. By exploring

methods to reduce the time complexity of the determinant, future

work may further develop the utility of CCPD algorithms as an

alternative to univariate approaches.
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